## Il comparatore a finestra

Il comparatore a finestra si usa per individuare se una data tensione di ingresso è compresa tra due valori (le tensioni di soglia inferiore e superiore). Analizziamo qui due circuiti: il primo presenta in uscita una tensione uguale a zero se il segnale di ingresso è compreso tra le due soglie e positiva altrimenti. Il secondo viceversa.

In tutti e due i circuiti gli operazionali sono alimentati con una tensione singola perché vogliamo che in uscita ci sia comunque una tensione positiva. Gli operazionali, infatti, lavorano in saturazione.

Cominciamo con il primo circuito:

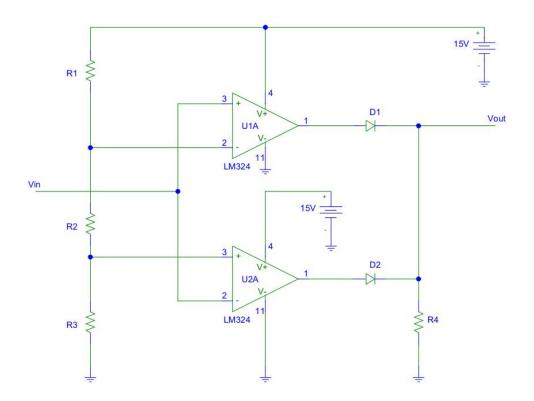



Figura 1 Comparatore a finestra con uscita a livello basso per valore di tensione di ingresso compreso tra le tensioni di soglia.

Supponiamo che la tensione di ingresso sia maggiore della tensione di soglia superiore e vediamo nel dettaglio che cosa succede.

- L'amplificatore operazionale U<sub>1A</sub> ha V<sub>in</sub> all'ingresso non invertente e V<sub>H</sub> all'ingresso invertente. Dato che V<sub>in</sub>>V<sub>H</sub>, in uscita presenta la tensione positiva V<sub>SAT</sub>. Il diodo D<sub>1</sub> è polarizzato direttamente;
- L'amplificatore operazionale  $U_{2A}$  ha  $V_{in}$  all'ingresso invertente e  $V_L$  all'ingresso non invertente. Dato che  $V_{in} > V_L$ , in uscita presenta la tensione nulla. Il diodo  $D_2$  è interdetto;

$$V_{out} = V_{SAT}$$

Analizziamo adesso il caso in cui V<sub>L</sub> <V<sub>in</sub><V<sub>H</sub>:

- L'amplificatore operazionale  $U_{1A}$  ha  $V_{in}$  all'ingresso non invertente e  $V_H$  all'ingresso invertente. Dato che  $V_{in} < V_H$ , la tensione di uscita è nulla. Il diodo  $D_1$  è interdetto;
- L'amplificatore operazionale  $U_{2A}$  ha  $V_{in}$  all'ingresso invertente e  $V_L$  all'ingresso non invertente. Dato che  $V_{in}>V_L$ , in uscita presenta la tensione nulla. Il diodo  $D_2$  è interdetto;

$$V_{out} = 0$$

Consideriamo il terzo ed ultimo caso dove  $V_{in} < V_L$ 

- L'amplificatore operazionale  $U_{1A}$  ha  $V_{in}$  all'ingresso non invertente e  $V_H$  all'ingresso invertente. Dato che  $V_{in} < V_H$ , in uscita presenta tensione nulla. Il diodo  $D_1$  è interdetto;
- L'amplificatore operazionale  $U_{2A}$  ha  $V_{in}$  all'ingresso invertente e  $V_L$  all'ingresso non invertente. Dato che  $V_{in} < V_L$ , in uscita presenta la tensione positiva  $V_{SAT}$ . Il diodo  $D_2$  è polarizzato direttamente;

$$V_{out} = V_{SAT}$$

Disegniamo il grafico dei segnali di ingresso e di uscita:

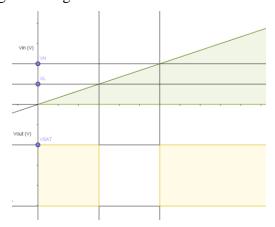



Figura 2 Segnali di ingresso ed uscita del comparatore a finestra di figura 1.

Ricaviamo infine le tensioni di soglia usando i partitori di tensione:

$$V_H = \frac{R_2 + R_3}{R_1 + R_2 + R_3} V_{CC}$$

$$V_L = \frac{R_3}{R_1 + R_2 + R_3} V_{CC}$$

Secondo circuito:

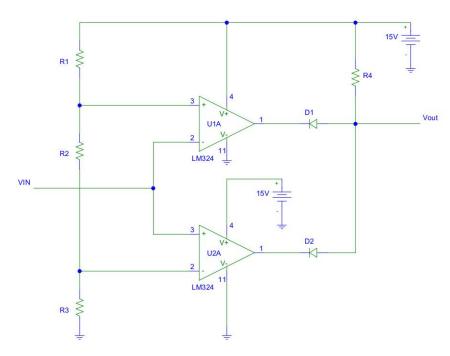



Figura 3 Comparatore a finestra con uscita a livello alto per valore di tensione di ingresso compreso tra le tensioni di soglia.

Analizziamo, come prima, i tre casi. Tensione di ingresso maggiore della tensione di soglia superiore:

- L'amplificatore operazionale U<sub>1A</sub> ha V<sub>in</sub> all'ingresso invertente e V<sub>H</sub> all'ingresso non invertente. Dato che V<sub>in</sub>>V<sub>H</sub>, in uscita presenta tensione nulla. Il diodo D<sub>1</sub> è polarizzato direttamente;
- L'amplificatore operazionale  $U_{2A}$  ha  $V_{in}$  all'ingresso non invertente e  $V_L$  all'ingresso invertente. Dato che  $V_{in}>V_L$ , in uscita presenta la tensione positiva  $V_{SAT}$ . Il diodo  $D_2$  è polarizzato inversamente;

$$V_{out} = 0$$

Nel secondo caso  $V_L < V_{in} < V_H$ :

- L'amplificatore operazionale  $U_{1A}$  ha  $V_{in}$  all'ingresso invertente e  $V_H$  all'ingresso non invertente. Dato che  $V_{in} < V_H$ , in uscita presenta tensione positiva  $V_{SAT}$ . Il diodo  $D_1$  è polarizzato inversamente;
- L'amplificatore operazionale  $U_{2A}$  ha  $V_{in}$  all'ingresso non invertente e  $V_L$  all'ingresso invertente. Dato che  $V_{in} > V_L$ , in uscita presenta la tensione nulla. Il diodo  $D_2$  è polarizzato inversamente;

$$V_{out} = V_{SAT}$$

Terzo V<sub>in</sub><V<sub>L</sub>:

- L'amplificatore operazionale  $U_{1A}$  ha  $V_{in}$  all'ingresso invertente e  $V_H$  all'ingresso non invertente. Dato che  $V_{in} < V_H$ , in uscita presenta tensione positiva  $V_{SAT}$ . Il diodo  $D_1$  è polarizzato inversamente;
- L'amplificatore operazionale  $U_{2A}$  ha  $V_{in}$  all'ingresso non invertente e  $V_L$  all'ingresso invertente. Dato che  $V_{in} < V_L$ , in uscita presenta la tensione positiva  $V_{SAT}$ . Il diodo  $D_2$  è polarizzato direttamente;

$$V_{out} = 0$$

Grafico dei segnali di ingresso e di uscita:

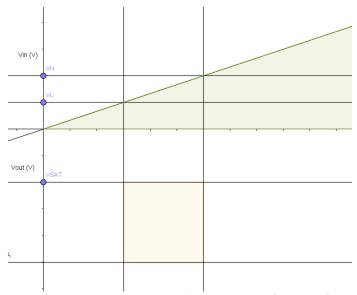



Figura 4 Segnali di ingresso ed uscita del comparatore a finestra di figura 3.

Le tensioni di soglia sono state ricavate precedentemente.

Possiamo dimensionare le resistenze R<sub>1</sub>, R<sub>2</sub> ed R<sub>3</sub> per ottenere le tensioni di soglia desiderate.

Per il dimensionamento di R<sub>4</sub> dal datasheet dell'amplificatore operazionale scelto (LM324) si legge che:

$$I_{out} = \frac{V_{CC}}{R_4} < 40mA$$

In questo esempio troviamo:

$$\frac{15}{R_4} < 40 \cdot 10^{-3} \rightarrow R_4 > \frac{15}{40} \cdot 10^3 = 375\Omega$$

Scegliamo  $R_4$ =10k $\Omega$  come suggerito in uno schema di esempio del datasheet. In questo caso, quando l'uscita è a livello alto (circa 15V) la corrente di uscita assuma il seguente valore:

$$I_{out} = \frac{V_{CC}}{R_A} = \frac{15}{10^4} = 1.5 mA$$

Sempre sul datasheet si legge che per un corretto funzionamento degli amplificatori operazionali le altre resistenze devono essere di qualche  $k\Omega$ .

Questo file può essere scaricato gratuitamente. Se pubblicato citare la fonte.

Matilde Consales