Il trigger di Schmitt non invertente

Il circuito di figura rappresenta un trigger di Schmitt non invertente.

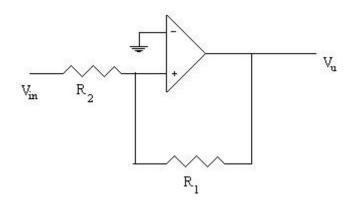


Figura 1 II trigger di Schmitt non invertente.

Il segnale è applicato al morsetto non invertente. La tensione presente al morsetto non invertente, che dipende sia dalla tensione di ingresso V_i che dalla tensione di uscita V_u , è confrontata con la tensione presente al morsetto invertente che in questo caso vale 0V.

Troviamo la tensione applicata al morsetto positivo con la sovrapposizione degli effetti. Supponiamo che l'uscita sia a livello alto $V_u=V_{sat}$:

$$V_{+} = \frac{R_2}{R_1 + R_2} V_{sat} + \frac{R_1}{R_1 + R_2} V_{in}$$

Dove il primo termine è dato dall'effetto di Vsat (partitore di tensione composto dai resistori R_1 e R_2 con V_{in} =0).

Nel caso in esame V_{REF} =0 perché è la tensione applicata al morsetto invertente. Per trovare la soglia inferiore del trigger poniamo V_+ =0 e risolviamo l'equazione rispetto a V_{in} = V_{TL} (infatti si ha la commutazione quando V_+ = V_{REF} =0 che corrisponde a V_{in} = V_{TL}):

$$\frac{R_2}{R_1 + R_2} V_{sat} + \frac{R_1}{R_1 + R_2} V_{in} = 0$$

$$V_{TL} = -\frac{R_2}{R_1 + R_2} V_{sat} \frac{R_1 + R_2}{R_1} = -\frac{R_2}{R_1} V_{sat}$$

Quindi:

$$V_{TL} = -\frac{R_2}{R_1} V_{sat}$$

Quando, invece, l'uscita si trova a livello basso (V_u =- V_{sat}) applicando, come prima, la sovrapposizione degli effetti si trova:

$$V_{+} = -\frac{R_2}{R_1 + R_2} V_{sat} + \frac{R_1}{R_1 + R_2} V_{in}$$

Procedendo come prima troviamo la soglia superiore del trigger:

$$-\frac{R_2}{R_1 + R_2} V_{sat} + \frac{R_1}{R_1 + R_2} V_{TH} = 0$$

$$V_{TH} = \frac{R_2}{R_1 + R_2} V_{sat} \frac{R_1 + R_2}{R_1} = \frac{R_2}{R_1} V_{sat}$$

Quindi:

$$V_{TH} = \frac{R_2}{R_1} V_{sat}$$

Vediamo cosa succede.

Partiamo dall'inizio e supponiamo che sia $V_i < V_{TL}$ e $V_o = -V_{sat}$. In questo caso la nostra tensione di riferimento vale:

$$V_{TL} = -\frac{R_2}{R_1} V_{sat}$$

La tensione in uscita si mantiene pari a $-V_{sat}$ finché V_i resta minore di V_{TH} .

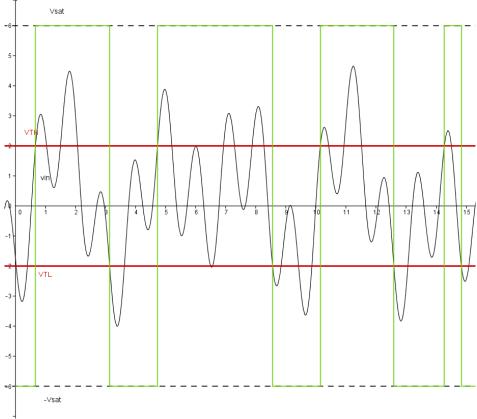


Figura 2 Segnali di ingresso e di uscita del Trigger di Schmitt. Le soglie sono in rosso, il segnale di ingresso in nero e quello di uscita in verde.

Adesso supponiamo che V_i diventi maggiore di V_{TH} . Succedono due cose:

- il dispositivo commuta e la tensione di uscita assume il valore V_{sat}
- la tensione di riferimento diventa:

$$V_{TH} = \frac{R_2}{R_1} V_{sat}$$

La tensione in uscita si mantiene a questo valore finché la tensione di ingresso resta maggiore di V_{TH} .

Quando V_i diventa minore di V_{TL} succedono due cose:

il dispositivo commuta e la tensione di uscita assume il valore -V_{sat}

• la tensione di riferimento diventa:

$$V_{TL} = -\frac{R_2}{R_1} V_{sat}$$

La tensione in uscita si mantiene pari a $-V_{sat}$ finché V_i resta minore di V_{TH} . I segnali di ingresso e di uscita sono rappresentati in figura 2. Disegniamo ora la caratteristica ingresso-uscita:

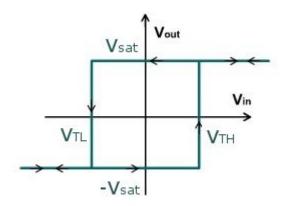


Figura 3 Caratteristica ingresso uscita.

Il grafico della caratteristica Ingresso Uscita presenta un'isteresi. Vediamo cosa succede: iniziamo da sinistra con $V_i < V_{TL}$ e seguiamo le frecce verso destra (la tensione di ingresso sta crescendo) la tensione di uscita vale $-V_{sat}$. La tensione di ingresso continua ad aumentare ma la tensione in uscita non varia fino a quando Vi non diventa maggiore di V_{TH} . La tensione di uscita diventa V_{sat} e si mantiene a questo valore finché $V_i < V_{TL}$.

Dal grafico di figura 2 si vede che se il segnale di ingresso varia mantenendosi tra le due soglie l'uscita non varia.

Questo file può essere scaricato gratuitamente. Se pubblicato citare la fonte.

Matilde Consales